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SUMMARY

1her is an ongoing effort to computerize Lr: Arned Services V ocational
-yLLuuae DiLtery 6SVA-), LijC eniisLed selection anu c .assfcatio. t, St, if,
an adaptive node. in an adaptive test, tie computer estimates hoo well the

examinee is doing after eacih itca lias been answefeu and then selects the next
item--more difficult for brighter examinees or easier for less bright

examinees--from a large pool ot items in its memory DanIK. Aoderti test tueory
allows examinees to be appropriately scored even tflougn tney nave each been

administered completely dirterent sets of items. 'inis report demonstrates
that examinees who are conrusen by tue computerizea administration meniuw Cno
give inappropriate reSponses to just a few or the initial items (i.e., give
responses that are not representative oi their actual knowleage) will be

severely penalizes in their Linai score. Applications of appropriateness
measurement teciiniques show that it is possible to identify sucn examinees

with riigrily computer-intensive calculations. Use or snort-cut lotmujas whicn
have been found useful under some conditions for appropriateness measuremeUt

give results Ltat are wucn less optimal. Issues for further research are
discussed.
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PREFACE

This technical paper was completed as part of the research conducted

tnder york U:nit 29220202, Prototype Development and Validation of Selection

and Classification Instruments, under eroject 2922, Personnel Assessment

Svstems.

The research on appropriateness for computer adaptive tests presented

in this pAper is ancillary to Air Force responsibility on appropriatenebs

of examinee responses on the Armed Services Vocational Aptitude Battery.

The Air Force acknowledges the Army for its initial guidance and

funding support on this effort.
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APPROPRIATENESS MEASUREMENT FOR COMPUTERIZED ADAPTIVE TESTS

1. INTRODUCTION

-omputerized adaptive testing (CAT) and appropriateness measurement

Levine & Dras ,ow, 1982; Levine & Rubin, 1979) are two promising

applications oF item response theory (IRT). The potential benefits of each

applicat:on represent important advances in testing and measurement. CAT

offers advantages over conventional, paper-and-pencil tests such as reduce('

-est length and equivalent measurement precision across the range of test

scores (*eiss, 1982). Appropriateness indices provide the capability of

:e:ec:ing spurious test scores that result from situations such as cheating

or alignment errors in marking answer sheets.

To date. appropriateness measurement has been applied to conventional

tests only. This paper presents research that examines the potential for

appropriateness measurement in adaptive testing. More specifically, methods

from appropriateness measurement will be used to attempt to detect one type

of response aberrance that may 'nave a serious impact on some CAT scores.

ln the remainder of this introduction, CAT and appropriateness

measurement will be reviewed briefly, a potential form of response aberrance

tcr CAT will be identified, and the scope of the present research will be

o It ined.

Computerized Adaptive Tests. CAT is designed to administer the set of

items, from a larger pool of items, that provide optimal measurement of eact

examinee's ability. This is accomplished by tailoring the difficulty of

each item administered to the current ability estimate (as calculated from

responses to the preceding items). In CAT, items that are too easy or too

difficult to provide information about ability are not administered:

nstead examinees receive items during the test that are highly informati+...

e ability.

The ability parameter and item difficulty parameter share the same

'RT. making it possible in CAT to select and administer items of

ae 1 i.,t,;. Although a variety of item selection strategies



-xist for CAT, each of these strategies is consistent with the logic of

ra tchin. item difficulty with estimated ability.

o potential of reduced test length for CAT requires that items

perform in accordance with their parameter estimates (Wainer & Kiely, 1987).

Mlore jenerallv, the IRT model used by the test must be able to account for

,.n examrnee's response pattern if the measurement virtues of CAT are to be

realized. Random departures from the model can be expected for some

e::aminees on some items. However, the impact of occasional misinformati':e

responses on the final CAT ability estimate is generally believed to be

sfal, especially if test termination is based on reducing the estimate's

standard error to an acceptable level and a sufficient number of items exist

to accommodate this criterion.

Appropriateness Measurement. For a variety of reasons, a multiple-

choice test may fail to provide a valid measure of ability for an examinee.

For example, answers may be copied from a more talented neighbor. resulting

in a spuriously high test score. Spuriously low scores may result from

circumstances such as alignment errors in marking the answer sheet (e.g.,

answering items 5 through 10 in the spaces provided for items 6 through 11)

cultural and/or linguistic bias, or extreme test anxiety. In each of these

cases, the test score may be an invalid measure of the ttait purportedly

measured by the test.

Appropriateness measurement provides several IRT-based methods for

identifying such scores. Each method develops a quantitative index to

classify item response patterns as either "normal" or "aberrant."

Appropriateness measurement is model-based; normal response patterns are

characterized as conforming to a specific IRT model for describing item

responses. In this sense, appropriatene~s indices are goodness-of-fit tests

for response patterns relative to an IRT model. The logic that underlies

aberrance detection for dichotomouslv scored, unidimensional tests is

straightforward: Inappropriate response patterns will contain correct

responses to difficult items co-occurring with incorrect responses to easy

items.

Simulation studies using appropriateness indices to classify aberrant

and normal response patterns have obtained high levels of detection for some

forms of aberrance on standar -zed tests (e.g., Drasgow, Levine, &

-2-



acau'hLin, IW7; Drasgow, Levine, & Wiliams, 1985; Levine & Rubin, it.

High detection rates have been achieved despite misspecification of the IRT

.odel. errors in item parameter estimates, and inclusion of inappropriate

srsorse pa tterns in the test norming sample (Levine & Drasgow, 1982)

Ti1e propertie-s of CAT may allow for successful applications of

,ppropriateness measurement. Since the difficulties of administered items

.ire derermined by examinee responses and the IRT model, some types of

.berrance may be easier to identify than with standardized tests.

On he oter hand, the relatively short length of adaptive tests ma,

not provide sufficient numbers of items to powerfully test whether a

response pattern departs from the pattern expected under a given IRT model

Molenuar and Hoijtink (1987) have noted that since adaptive tests are

relativelv homogeneous with respect to item difficulty, there may rot be

sufficiet 'variance among item difficulties to detect inappropriate pat:err.L

r,t esponse. The', recommend that appropriateness measurement not be applied

to rests of less than 20 items, since random fluctuations may dominate

s.sterratic departres from the IRT model over small numbers of items.

TAT Response Aberrance. Though applications such as CAT have generated

interest among measurement practitioners, several concerns for computerized

resting have been raised (Hunt & Pellegrino, 1985; Matarazzo, 1983) One

concern is that taking the test on a computer may present a significant

id'.'antage or disadvantage to some examinees. For example, examinees with

.ittle or no previous computer experience may initiaily be intimidated by

the task of taking a computerized test. Test performance may suffer as a

result. The negative impact of anxiety on attention and cue utilization

in tasks such as psychological rests is well documented (Broadbent, 1971:

Easterbrook. 1959; Kahneman, 1973).

Fr CAT examinees. computer/test anxiety could result in test-taking

uehavior that departs significantly from the IRT model used by the test

)r these examinees, item responses may appear to be the product of a randcr

a rt-.er than the function of item and person parameters prescribed by

: dP- Ar..:ioT.s CAT examinees might experience difficult,' in

, ir - n on items throughout the test. Some of these anxious

s , .. .,- iht settle down" at some point during the test and

's- -o the remiininn it-ns ina manner consistent with the IRT model.



Fhe possibility of this latter situation raises an important question f)r

-AT- If an examinee "fumbles" through initial items and then "recovers" to

respond more appropriately throughouL the remainder of the test, does the

adaptive test recover as well and provide accurate results'

Theoreticallv, adaptive tests are robust to sequences of misinformative

responses. If enough items are administered, the impact of these aberrant

responses can presumably be minimized and accurate ability estimates may be

obtained In practical CAT settings this may not hold true, however. The

slorithms used for item selection and ability estimation may not be rubust

to sequences of misin-ormativc responses, particularly when they occur at

the outset of the test. Short, fixed-length adaptive tests, such as those

planned for use with the Armed Services Vocational Aptitude Battery (ASVAB),

may be particularly vulnerable.

Present Research. The present research contains a series of Monte

Carlo studies designed primarily to address three issues: (a) the impact of

.n nitial sequence of random responses on CAT results, (b) the potential of

appropriateness measurement for detecting this type of response aberrance,

and c) the performance of the optimal appropriateness index under practical

testing conditions such as standardizing the index and using an item

security procedure to administer CAT items.

Study I ex.mines the robustness of short, fixed-length adaptive tests

to ar. initial sequence of random responses. Study 2 focuses on the highest

possible detection rates for this form of response aberiance on a 15-item

adapt ive test. Results from Study 2 will determine whether any

appropriateness index computed from dichotomous responses can provide the

level of detection tha: practical testing situations will require.

Studies 3 through 6 eramine several issues rclated to implementating

appropriateness measurement for detecting random responses to initial CAT

items. In Study 3, several nonoptimal appropriateness indices are examined

to see if the performance of any of these indices approaches the optimal
levels observed i Study 2. The sampling behavior of appropriateness

:,:eas.:rement results using 'onte Carlo procedures is addressed in Study 4.

The resl-s of Study -4 are then used in the designs for both Study 5 and

Study 7. %.;hich exnmine. respectivelv, the effect of an item security

procedure on detection rates and the Peneralizability of aberrance detection



using the optimal index under nornoptimal conditions. Study 6 investigat-es a

' 7!ndarlized version of the optimal index initially used in Study 2 and the

'I' standardization oni its detection rates.



II. STUDY I: ROBUSTNESS OF SHORT ADAPTIVE TESTS

Purpose. A sequence of misinformative rcsponses to initial CAT items

ma" have a serious imn;- on test results. This study assesses the effect

Df this type of response aberrance on CAT results for examinees of varying

ibilitxv levels.

Data Generation. Ten ability levels corresponding to the 5th, 15th,

S5th, anid 95th percentiles for a normal distribution were used in

generating responses to a 15-item adaptive test. The item pool consisted of

100 items from the CAT-ASVAB Word Knowledge item pool. Expected a

Poserlori (EAP) kBock & Mislevy, 1982) estimation was used to obtain an

ability estimate after each item response and items were selected to

maximize information at #.

In -he control (no aberrance) condition, dichotomous responses to each

ttem were determined by calculating the probability of a correct response

using the three-parameter logistic model (Birnbaum, 1968) and comparing this

probability to a random number drawn from a uniform [0,11 distribution. If

the response probability was greater than the random number, the item

response was scored correct; otherwise, the response was scored as

incorrect.

In the aberrance conditions, the initial one, two, three, four, or five

responses for each simulated examinee were made to be random; for these

items, random responding to a 5-option multiple-choice item was modeled by

setting the probability of a correct response equal to .20. The remaining

item responses were determined by calculating the response probability using

the three-parameter logistic model.

Results. Table 1 shows the average 9s calculated over 1,000 simulees

at each ability level and at each of the aberrance conditions. Results for

the no aberrance condition (k = 0) show that the adaptive test tends to

underestimate above-average abilities and overestimate below-average

abilities, with this negative and positive bias becoming more pronounced at

extreme ability levels. These results are consistent with other CAT

research that has demonstrated the regression effect for Bayesian

,stim:ation (e.g., McBride, 1977> Weiss & McBride, 1984).

-6-



Table 1. Simulation Results for a 15-Item Adaptive Test W.hen

the Initial k Responses Are Random

k = 0 k = I k =2 k = 3 k = 4 k - 5

_ PSD 9 PSD 0 PSD 0 PSD 6 PSD 6 PSD

-1.640 -1.55 0.26 -1.53 0.25 -1.53 0.25 -1.56 0.25 -1.62 0.25 -1.68 0.26

-1.040 -0.99 0.25 -0.98 0,25 -1.03 0.25 -1.09 0.25 -1.22 0.25 -1.33 0.25

-0.670 -0.64 0.25 -0.68 0.24 -0.73 0.24 -0.85 0.25 -1.02 0.25 -1.14 0.25

-0.385 -0.39 0.24 -0.42 0.23 -0.51 0.24 -0.66 0.25 -0,88 0.25 -1.05 0.25

-0.125 -0.11 0 24 -0.19 0.23 -0.32 0.24 -0.51 0.25 -0.75 0.25 -0.99 0.25

0.125 0.13 0.24 0.01 0.24 -0.13 0.25 -0.39 0.26 -0.71 0.25 -0.95 0.25

0.385 0.36 0.24 0.21 0.24 0.02 0.25 -0.34 0.26 -0.66 0.26 -0.86 0.25

0.670 0.62 0.24 0.44 0.25 0.17 0.26 -0.21 0.26 -0.59 0.26 -0.90 0.25

1.040 0.98 0.23 0.76 0.27 0.32 0.27 -0.14 0.27 -0.57 0.26 -0.84 0.25

1.640 1.52 0.23 1.17 0.30 0.50 0.28 -0.09 0.28 -0.50 0.26 -0.83 0.25

Note: 0 = Ability parameter used in generating normal item responses.

9 = Mean ability estimate.

PSD = Mean posterior standard deviation.



Comparisons of Os and 9s in Table I highlighL the serious consequences

of an initial sequence of misinformative responses on some CAT scores. The

degree of measurement bias is quite severe in some cases. In general, These

results show that the highest ability levels are associated with the largest

levels of underestimation. Significant underestimation occurs for above-

average abilities when the initial two item responses are misinformative,

and this negative bias becomes increasingly pronounced as the number of

misinformative responses increases. The most extreme example is shown in

the case of the highest ability level (9 = 1.64): An examinee at the 95th

percentile who gives random responses to the first five items of the

adaptive test would obtain, on average, a test score below the 25th

percentile. For less extreme cases, the problem is not as severe but is

still significant. These results strongly suggest that a 15-item adaptive

test, using well-accepted ability estimation and item selection strategies.

does not recover from an initial sequence of random responses to yield

accurate ability estimates.

Table 2 gives the results for adaptive tests of 20 and 25 items. For

the 25-item test, the size of the pool of available items was increased to

200. Results for the control conditions for both tests show that the

regression effect on Os becomes less severe as additional items are

administered. The results for the aberrant conditions, however, indicate

that the effect of misinformative responses to initial items is not removed

or significantly reduced by increasing test length. The level of

underestimation observed for the 20-item adaptive test, after the initial

five responses were random, is comparable to the results for the 15-item

adaptive test where the initial four responses were random. The effect of

an initial sequence of five random responses on ability estimates for a 25-

item test is also significant. The results for the 25-item test are more

severe than those obtained for the 15-item test when the initial three

responses were random, but less severe than the results for the 15-item test

when the initial four responses were random.

-8.



Table 2. Simulation Results for 20- and 25-Item Adaptive Tests

when the Initial k Responses Are Random

20-Item Test 25-Item Test

k 0 k =5 k 0 k= 5

_ PSD 6 PSD 0 PSD 0 PSD

-1.640 -1.57 0.22 -1.67 0.22 -1.58 0.20 -1.68 0.20

-1.040 -1.00 0.22 -1.27 0.22 -1.00 0.20 -1.22 0.20

-0.670 -0.64 0.22 -1.03 0.22 -0.65 0.20 -0.99 0.20

-0.385 -0.37 0.21 -0.90 0.22 -0.38 0.19 -0.82 0.21

-0.125 -0.12 0.21 -0.82 0.23 -0 11 0.19 -0.71 0.21

0.125 0.13 0.21 -0.75 0.23 0.12 0.19 -0.60 0.21

0.385 0.36 0.21 -0.69 0.23 0.36 0.19 -0.51 0.22

0.670 0.63 0.21 -0.62 0.24 0.64 0.19 -0.41 0.22

1.040 1.00 0.21 -0.58 0.24 1.02 0.19 -0.36 0.22

1.640 1.56 0.20 -0.54 0.24 1.57 0.19 -0.31 0.23

Note: 0 = Ability parameter used in generating normal item responses.

0 = Mean ability estimate.

PSD - Mean posterior standard deviation.

-9-



Dismussion. Tables I and 2 document a potentially serious problem for

short adaptive tests such as CAT-ASVAB. A sequence of as few as two random

responses at the outset of the test may, in effect, anchor some estimates of

abilitv' far below true ability. The problem is not removed by administering

additional items. Decisions based on these spuriously low ability estimates

may lead to selection and classification errors with potentially serious

implications for the examinee and the test user.

The negative consequences of a sequence of misinformative responses to

initial CAT items warrant the development of methods for detecting the

occurrence of this form of response aberrance. The posterior standard

deviation (PSD), calculated during EAP estimation, would seem to be one

logical candidate. A sequence of random responses would be expected to

inflate the error in the ability estimate; the PSD should reflect this.

From the results reported in Tables I and 2, however, it appears that the

PSD was largely insensitive to the occurrence of random responses to initial

CAT items.

- (o-



III. STUDY 2: OPTIMAL DETECTION OF RANDOM RESPONSES TO INITIAL ITEMS

Prpose. The results in Tables I and 2 indicate that adaptive tests

.'ill urderestinate the abilities of many examinees who give misinformative

responses to initial items. This study examines the highest possible rates

of dete'tion for this form of response aberrance. Focusing on the upper

bound of detectabilitv allows for a determination of the potential for

applyirg appro-riateness measurement to this problem. Research addressing

issues related to this application are justified only if reasonable

detection ratts have been observed in the optimal case.

The Appropriateness Index. Levine and Drasgow (1988) have shown that

-he Nevman-Pearson lemma (Lehman, 1959) can be used to obtain a most

powerful statistic for testing the hypothesis that a response pattern is

normal versus the hypothesis about a specifi> form of test-taking aberrance.

For a v.ector of dichotomously scored responses u, the test statistic is

A(u) = P A (U) / PN(u), (1)

%.here P A(U) is the probability of observing u when the response pattern was

generated under conditions of aberrance (e.g., random responding to the

first items) and PN (u) is the probability of observing u when the response

pattern was generated under normal test-taking conditions (e.g., the three-

parameter logistic model).

For an n -item adaptive test with deterministic item selection

Pnu u 1-uPN = f{ H P (9) i i - P (9)] i ) f(9) d6, (2)
i=l ~i Si

where s. is the item number of ith item administered, P (9) is the
I S.

I

probability correct for an examinee with ability 9, u. is the dichotomous

response to the item administered at stage i, and f(g) is the density of the

ability distribution at .

To obtain PA (u), where aberrance in this case is random responding to

the initial k items on the test, equation 2 is modified so that the random

respon-es are modeled by P (9) = .20 (assuming 5-option items) for
S.

all I and i = I to k:
k n

1 I-LI n I -u
P A (ul; H ( 2 )L. ()8) 1 H P () i 2 8) - P (9)] uii f(9)d6. (3

i k+l i.



The appropriateness index based on equation I, the likelihood ratio

LR), is the most powerful hypothesis test in the sense that maximum power

is achieved for each given Type I error rate a. That is, in testing the

hypothesis that a response pattern is "normal" versus the hypothesis that

,he pattern is "aberrant," no other appropriateness index computed from item

responses provides greater power at a (Levine & Drasgow, 1988).

Appropriateness Index Power. One technique that has been used to

examine the effectiveness of an appropriateness index in classifying normal

and aberrant response patterns is the construction of Receiver Operating

Characteristic (ROC) curves. Assuming that large index values are

associated with aberrance, a point on the ROC curve is obtained by

specifying a score t for the index and then computing

x(t) = the proportion of population X (normal) response

patterns with index values greater than t;

y(t) = the proportion of population ' (aberrant) response

patterns with index values greater than t.

The ROC curve consists of the points (x(Wt), y(t)) obtained for various

values of t. The false alarm rate (probability of incorrectly labeling a

normal pattern as aberrant) when using t as the cut score is given by x(t).

The hit rate (probability of correctly identifying an aberrant pattern) is

Siven bv y(c).

Asymptotic ROC Curves. Previous examinations of the detection rates of

various appropriateness indices used distributions of normal and aberrant

respotse patterns generated with Monte Carlo procedures, combining these

patterns into a single group and ordering them on the magnitude of the

appropriateness index, and constructing an ROC curve in the manner described

in the preceding paragraph. These sample ROC curves represent stochastic

approximations to the population ROC. The accuracy of these approximations

has not been extensively investigated.

An analytic procedure for constructing ROC curves is presented in the

following paragraph, This procedure determines the asymptotic ROC curve for

a specified appropriateness index, form of aberrance, and adaptive test.

Unlike the sample-based ROC curves generated by Monte Carlo methods, the

asymptotic ROC curves contain no sampling error and thus display the

performance of the appropriateness index in the population.
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Specifying a rest length of n items and an item pool for the

deterministic adaptive test, the analytic procedure involves the following
On

steps. First, all pussibie 2 dichotuinou response patterns are

?riumerated. For each response pattern u = (ul, 1u2''.. u ), the n items

that the adaptive test would administer to an examinee demonstrating pattern

u are then determined. The a, b, and c parameters for these items and u are

then used to compute PN(u) and PA (u). An exact value for k is specified

for PA'u). At this point in the procedure, an appropriateness index is

computed for response pattern u. In the case of the LR index, the

probabilities PN (u) and PA(u) (equations 2 and 3) are used to obtain A.

Since a 15-item deterministic adaptive test has only 2 32,768

different response patterns, it is possible to compute P N (u) and P A(U

exactly for each pattern u. This property allows tor constructing the

asymptotic ROC curve. By ordering the response patterns from highest to

lowest on the magnitude of the appropriateness index (assuming that large

index values are associated with response aberrance) and computing

Cumulative PN and PA with each successive pattern, the information required

to construct the asymptotic ROC curve is obtained.
1

For u , the response pattern assoriat d with the largest index value.

PA(u and P,(u represent the values y[A(ul)] and x[)(ul)], respectively.

These coordinates give the hit rate and false alarm rate, respectively, and

represent the initial point on the ROC curve. The second point on the ROC

curve represents the hit and false alarm rates when using cut score A(u2),
2

where u is the response pattern associated with the second largest index

value. A point on the ROC curve is obtained by computing x[A(u 2)] = PN(U

+ PN(U 2 ) and y[A(u 2)] = P A(U 1 ) + P A(U 2). The coordinates for the kth point

are k N(U1 ) + PN(U2 ) +.+ PN(U k -l ) + PN(U k ) and yX(u )] =

PA2Uk-l )  P(k khr

P (U ) + P (U 2 ) +2+ P (u ) + P (u ), where u is the response pattern
A A A A
wiving the kth largest value of A. In this way, the 2n  points for the

_svmptotic ROC curve are obtained

Analyses. A series of analyses of the type described in the preceding

paragraphs were performed to examine the power of the LR index for detecting

rdndom responses to the first k items of a 15-item adaptive test, where k

:qualed 1. 2. 3, 4, or 5. All possible response patterns for a 15-item test

'.-re -nimerated, resultinw in 3.768 patterns. The item pool for the test
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consisted of the 100 most informative items from the 258 items in the CAT-

ASVAB 'Word Knowledge item pool. Modal Bayesian estimation (Owen, 1969,

1975) was used to obtain ability estimates at each stage of the test and

items were selected to maximize information at 9. Equations 2 and 3 were

computed using a normal !0,11 density and Simpson's rule for numerical

integration. Asymptotic ROC curves were then constructed for the LR index

in each of the five aberrance conditions.

Results. Table 3 contains selected points from the asymptotic ROC

.ur.,es for the LR index. Figure 1 shows the ROC curves. The detection

rates given in Table 3 indicate that an initial sequence of random responses

can be accurately identified. High hit rates, relative to low false alarm

rates, were obtained using the LR index. High detection rates were achieved

even in the least extreme case of aberrance. 7hen aberrance is defined as a

random response to the first item only, the LR index correctly identifies

over half of the true instances of aberrance at a false alarm rate of .10.

Approximately the same degree of power exists for the extreme case, where

random responses are given for the first five items, but this level of

detectability is achieved at the expense of a false alarm rate of only .001.

Discussion. Table 3 and Figure 1 present a successful application of

appropriateness measurement to a form of response aberrance that can have

serious consequences for CAT-ASVAB scores. The results in Table 3 indicate

that an initial sequence of random responses can be detected with high

levels of accuracy. These detection rates were achieved at the false alarm

levels that would be required for practical application.

The results of this study demonstrate the potential for appropriateness

measurement in CAT. These results justify further studies focusing on

practical issues involved in implementing an appropriateness measurement

procedure for detecting misinformative responses to initial CAT items.
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Table 3.

Proportion of Aberrant Response Patterns Detected

by the Likelihood Ratio Index at Selected ROC Curve Points

(Aberrance - Random Responding to the Initial k Items)

E k = I k = 2 k = 3 k = 4 k =5

.001 .13 .26 .35 .45 .49

005 .21 .36 .46 .56 .62

01 .27 .41 .52 .61 .66

02 .33 47 .57 .66 .71

03 .37 .50 .61 .69 .75

04 .40 .53 .64 .71 .77

05 .43 .55 .66 .73 .78

. 7 .59 .69 .76 .81

10 .52 .64 .73 .80 .85

Note: o - Proportion of Normal Patterns Incorrectly Identified as

Aberrant.
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Figure 1. ROC Curves for the Likelihood Ratio Index Where Aberrance-

Random Responses to the Initial k Items.



IV. STUDY 3: DETECTION RATES OF NONOPTIMAL INDICES

P, irpose. The effectiveness of several different appropriateness

-dices will be evaluated in this studv. The indices include Drasgow,

Levine, and 'Wiliams' (198i standardized version of the log likelihood

__ex Levine & Rubin, 1979, Tatsuoka's (1984) "extended" caution index,

and two fit statistics given by Rudner (1983). These four indices were

chosen because they have been successful in detecting some forms of response

aberrance when applied to conventional tests. In some cases, these indices

have provided depection rates approaching the optimal levels given by the L.R

index Drasgow et al 1937). Each of these nonoptimal indice. is

relatively easy to compute, thereby increasing their appeal as candidates

rut practical testing situations. The primary goal of this study is to

.,ssess the degree to which these indices are less than optimal.

Appropriateness Indices Drasgow et al. (1985) provided an approximate

c tndar:!izarion of Levine and Rubin's (1979 0 index. The,;

, u In P.(9) + (1-u,) In Q1(0), -.

is an abilitv' estimate computed from the examinee's item responses

. is -he probabilit-y of an examinee with ability # making the correct

respon, to item ,n i ;s the dichotomous item response for item i, and .

S= -i Draszow et al. (1985) give an approximate

tsndoardi~at ion ot I. as:

L E( L0 )

L Z V r
k'ar(L0 )1/

where

E(L 0) -Z IP (9) In P.(9) + Q (0) In Q (6)!

An d

Var{L ) = 'P(()Q.#) In P.(9)/Q(#)

,n previous studies with conventional paper-and-pencil tests, maximum

.... n... o ahility: estimates (MLEs) were used to provide the 4s of equ:itio,-s

in 'he present study of adapti.e computer administered tests,

ru,,idn" I ,-ian estimates are used



Rudner (1983) suggested two indices that are three-parameter

generalizations of Wright's (1977) Rasch model fit statistics-

- P (')12

Fl1  (6)PF1 = [I i (8)

n P0 8Q (9)n i

and

F2 (9)

The last appropriateness index is the approximate standardization of the

fourth "extended caution index" given by Tatsuoka (1984):

E P (9) u )(P (9) P)

z.P 2 12 (10)>P(8)O.(9)(p.(o) p)- /

where

P (11)O
n .

Analyses. Asymptotic ROC curves for LZ, Fl, F2, and T4 were

constructed using the analytic procedure described in Study 2. Test

specifications were identical to those used in Study 2. Aberrance was

defined as random responses to the initial five items of the test.

Results. Table 4 gives the proportion of aberrant patterns detected by

each index at various false alarm rates between .00 and .10. Also listed in

Table - are the optimal detection rates given by the LR index. Figure 2

shows the ROC curves for each of the nonoptimal indices.

From the results in Table 4 it is evident that none of the nonoptimal

indices provided aberrance detection approaching optimal levels. At an

error rate of .005, for example, the best performing nonoptimal index (F2)

was only 25% as powerful as the LR index.

Dis.ussion. The nonoptimal indices represent omnibus tests of response

aberrance. In this sense, their ineffectiveness in detecting random

respnnses to the intial five items of a 15-item test is not surprising.

The [R index provides superior detection because an alternative hypothesis

is specified
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?,ible 4 Proportion of Aberrant Response Patterns Detected

U' :Appropriateness Indices at Selcted ROC Curve Points

Aberrance Random Responses to the Initial 5 Items)

_ LR LZ F1 F2 T4

O.0l .49 . . .11 .01

u'95 .62 .11 .03 .16 .02

)1 66 .12 .05 .20 .09

(2 .1 .15 08 .22 .13

.03 .75 .18 .11 23 .14

O, .77 .20 .19 .25 .16

05 78 .23 .20 .26 .20

.07 .81 .26 .23 .28 .24

10 .85 29 .27 .32 .27

Note: a = Proportion of Normal Patterns misclassified as Aberrant.

LR = Likelihood Ratio.

1,Z = Standardized Log Likelihood.

Fl = Standardized Squared Residual.

F2 = Standardized Squared Residual.

T4 = Standardized Extended Caution Index.
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Figure 2. ROC Curves for Nonopcimal Appropriateness Indices.
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Another constraint to aberrance detection was provided by the small

:-umber of item responses analyzed. Comparisons of results for LZ, Fl, F2,

nd T-4 on an 85-item test (Drasgow et al., 1987) and a 30-item test

.Drasg~~L,.,ine, Wdilliams, McLaughlin, & Candell, in press) show a

significant decrease in detecting the 30% spuriously low condition with the

shorter test. In applying these indices to 15-item tests, further decreases

in detection ratez would be expected. Molenaar and Hoijtink's (1987)

warning against the use of nonoptimal indices on tests of fewer than 20

items appears to be valid in the present case. Five aberrant responses and

10 nonaberrant responses do not appear sufficient to generate a signal

distribution that is distinguishable from the distribution of noise when

using an omnibus index such as LZ or T4.
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V. STUDY 4: RECOVERY OF ASYMPTOTIC ROC CURVES USING

MONTE CARLO METHODS

Purpose. The ROC curves presented in Studies 2 and 3 were constructed

by an analytic, as opposed to probabilistic, procedure and contain no

samplinig error: these curves give the performance of the appropriateness

indices in the population. In contrast, previous appropriateness

measurement studies have used Monte Carlo methods to generate samples of

normal and aberrant response patterns prior to constructing ROC curves. Two

important concerns with these methods are the accuracy and stability of the

ROC curves they produce. To date, the sampling behavior of ROC curves

constructed by Monte Carlo methods has not been systematically examined.

The sample sizes for normal and aberrant response patterns needed for

accurate and stable ROC curves are unknown

This study focuses on the accu.racy and variability of sample-based ROC

curves. Monte Carlo method, of the type found in previous appropriateness

measurement studies are used to generate samples of aberrant and normal

patterns. 0OC curves are constructed using different Ns for aberrant and

normal samples to examine the effects of sample size.

The results of these analyses provide important information for at

least two reasons. First, previous research on appropriateness measurement

can be reexamined to see if the sample sizes used in these studies provide

accurate results in the present analyses. Determining the Ns needed for

accurate and stable ROC curves will also make it possible to interpret with

greater confidence the Monte Carlo studies presented in Study 5 and Study 7.

Although the analytic procedure is an elegant and powerful approach for

constructing ROC curves under certain limiting conditions (e.g., tests of 15

items or less), several questions about detection rates cannot be addressed

,ith this approach but insc-ad require Monte Carlo simulation. One of these

questions involves the effect of an itam security algorithm on detection

rates, which is the focus of Study 5. Study 5 involves a larger population

of response pattern/test items combinations than can be handled with the

analytical procedure, given practical constraints such as computer memory and

computer processing time.

Data Generation. Normal and aberrant response patterns were generated

by first sampling an ability parameter from a normal distribution with mean
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0.0 and variance of 1.0. At each of the 15 stages of the adaptive test, the

probability of making a correct response was given by the three-parameter

logistic function. Aberrant response patterns were created by fixing the

probability of a correct response at 0.20 for the first five items. The

item pool for the test consisted of 100 CAT-ASVAB Word Knowledge items.

Ability estimates were obtained using modal Bayesian estimation, and items

w'ere selected at each stage of the test by using a maximum information

criterion. Thp initi3i Thirliv e-rimare was set to 0.0, the mean of the

Bayesian prior, for each simulated examinee.

Samples of normal patterns consisted of 200, 1,000, 2,000, or 4,000

patterns. Aberrant samples were 100, 500, 1,000, or 2,000. These sample

sizes were chosen to span the range used in previous research. Table 5

provides a summary of the 16 conditions.

Analyses. ROC curves were constructed by first merging the samples of

normal and aberrant patterns and ordering these patterns from highest to

lowest with respect to the LR index computed for the pattern. Beginning in

-he list of patterns with the aberrant pattern associated with the largest

index value, and proceeding with each successive aberrant pattern, the

proportion of aberrant patterns and normal patterns existing at that level

or above in the list were determined, providing the coordinates for a point

on the ROC curve. Thus, the hit rate was uniformly incremented by the

reciprocal of the aberrant sample N at each point on the ROC curve.

The procedure for constructing ROC curves described in the preceding

paragraph differs from the procedure implicit in the definition of an ROC

curve given in Study 2. As defined in Study 2, ROC curves are constructed

by evaluating hit rates and false alarm rates at each index value, ordered

from largest to smallest (assuming that large index values are associated

with aberrance). Using this approach, each successive point on the ROC

curve (i.e., moving from low false alarm rates to high false alarm rates) is

not necessarily associated with a larger y-coordinate. For example, if all

of the patterns for two successive index values are nonaberrant, the hit

rate v¢ill remain const-nt: while the false alarm rate increases. The

contrasting approach used in the present study, where each successive point

on :he ROC curve necessarily does possess a larger y-coordinate than the

previous point, was chosen for reasons of computational efficiency. It is

-23-



Table 5. Summary of Data Sets used to Evaluate the Recovery of Exact ROC

Curves

Aberrant Normal

Data Set Sample Size Sample Size

1 100 200

2 500 200

3, 00 20

4 2,000 200

5 100 1,000

6 500 1,000

7 1,000 1,000

8 2,000 1,000

9 100 2,000

10 500 2,000

11 1,000 2,000

12 2,000 2,000

13 100 4,000

14 500 4,000

15 1,000 4,000

16 2,000 4,000
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important to note that the fundamental shape of the ROC curve will be the

same using either procedure described in Study 2 or the procedure used in

the present study.

Conditions 1-3, 5-7, and Q-11 contained 20 independent replications.

To reduce CPU time, conditions 4, 8, and 12-16 contained 10 independent

replications. A graphic procedure was used to examine the variability of

the Monte Carlo ROC curves. This procedure is similar in spirit to Thissen

and Wainer's (1983) "N-line plot" technique for evaluating the confidence

envelopes for item characteristic curves. For each condition, the ROC

curves generated by Monte Carlo simulation were plotted simultaneously.

Recovery of the asymptotic ROC curve was also evaluated graphically by

plotting points from this curve against the sample-based curves.

Results. Figure 3 shows the ROC curves constructed using 200 normal

patterns and 100, 500, 1,000, and 2,000 aberrant patterns, respectively.

Figure 4 shows the curves for samples of 1,000 normal patterns and each of

the four sample sizes for aberrant patterns. Figures 5 and 6 give the

curves constructed using 2,000 and 4,000 normal patterns, respectively, and

the four sample sizes for aberrant patterns. The open circles in each plot

are points from the asymptotic ROC curve for the LR index.

It is evident from Figures 3 through 6 that the range of sample sizes

used in the 16 conditions resulted in large differences in the variability

and accuracy of the ROC curves. It is also clear that the smaller sample

sizes do not provide acceptable levels of stability and accuracy.

Conditions 1, 5, 9, and 13 (100 aberrant patterns) resulted in the least

accurate ROC curves. The most dramatic improvement in accuracy and

stability occurs when the aberrant sample size is increased from 100 to 500

(conditions 2, 6, 10, and 14), but the ROC curves generated in these

Cu~idiLjons ace still highly variable.

Condition 16 (4,000 normal, 2,000 aberrant) provided the most accurate

and stable ROC curves. Eight of the 10 curves in this condition very

closely approximated the asymptotic ROC curve. Condition 12 (2,000 normals.

2,000 aberrants) and Condition 15 (4,000 normals, 1,000 aberrants) appear to

be equivalent with respect to accuracy, but the curves constructed in

condition 15 are somewhat less variable.
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Figure 3. ROC Curves for Data Sets 1 -4.
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1,000 Normal Response Patterns
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Figure 4. ROC Curves for Data Sets 5 - 8.
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2,000 Normal Response Patterns
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0."

0.00-

0.70

I* 0'1

60

0.51

0.0

0.201
0 .00 .S $A 0.15 W 0.15 0.00 0.1

False Alarm Rate

Figure 5. ROC Curves for Data Sets 9 - 12.
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Figure 6. ROC Curves for Data Sets 13 16.
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Discussion. The purpose of the analyses presented in this study was to

determine the necessary sample sizes for constructing ROC curves using the

LR index. Samples of 4,000 normal patterns and 2,000 aberrant patterns

provide accurate approximations to the asymptotic ROC curve. These sample

sizes will be used in Studies 5 and 7.

Samples of 4,000 normal and 2,000 aberrant patterns have been used

frequently in previous appropriateness measurement research. The results

presented in this study provide at least partial support for the Monte Carlo

methods used in these earlier studies. It is important to note that the

present results were obtained for a test of 15 items. The interaction of

test length and sample size needs to be examined with longer tests.

However, constructing asymptotic ROC curves using the number of items found

in many standardized tests is not currently feasible; computer memory and

processing requirements for such analyses are prohibitive. For example,

there are more than 35 million dichotomous response patterns for a 25-item

test; over 1 billion patterns exist for a 30-item test. An alternative to

the analytic procedure will be required for evaluating the asymptotic ROC

curves for longer tests.
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VI. STUDY 5: EFFECT OF AN ITEM SECURITY PROCEDURE

ON OPTIMAL DETECTION

Purpose. The results presented in Study 2 for the LR index are based

,i: n adaFcive test that is deterministic with respect to item

administration at each branch of the test. That is, a one-to-one

correspondence exists between each dichotomous response pattern and the set

of items administered by the test. It is not likely that this situation

would be encountered in practice, however. For purposes of test security,

many adaptive tests use procedures for limiting tl. exposure of items.

The question addressed in this study is whether an item security

procedure degrades the power of the LR index for detecting random responses

to initial items. If aberrance detection changes significantly as a result

of the item security algorithm, the analytic procedure used in Studies 2 and

3 cannot be used to evaluate the LR index with practical adaptive tests.

nstead, Monte Carlo procedures of the type used in Study 4 will be

required. If the performance of LR is unaffected by the item security

algorithm, the analytic approach will remain a valid procedure for

evaluating the index with adaptive tests.

Data Genieraion. Monte Carlo procedures identical to those described

in Study 4 were used to create samples of 4,000 normal and 2,000 aberrant

response patterns. Aberrant patterns contained random responses to the

first five items of the test: response probabilities for the remaining 10

items were determined by the three-parameter logistic model. The item pool

and ability estimation procedures for the adaptive test were identical to

those used in Studies I through 4. Unlike the test used in Studies 1

through 4, however, the adaptive test simulated in the present study used an

item security procedure when selecting items. At each stage of the test,

the most informative unused item is sampled with a probability of .25 from

The appropriate row in the information table. If this item is not selected.

the next most informative unused item is sampled with probability .33. If

neither of the first two items is selected, the third most informative item

is sampled with probability .50. The fourth most informative item is

idmiisztered if none of the first three items are sampled.

Tei independent sets of aberrant and normal samples were generated.

z :urx'es were constructed within each replication in the manner described
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in Study 4, using the LR index to identify aberrance. These curves were

then plotted simultaneously, along with points from the asymptotic ROC curve

for the LR index.

Results Figure 7 shows the 10 ROC curves for the LR index where a

.-curit'; procedure was used when selecting items. The open circles in

Figure 7 are points from the asymptotic ROC curve for LR, where the most

informative unused item was selected at each stage of the test.

The ROC curves in Figure 7 display more variability than the curves

shown in condition 16 of Figure 6, which were constructed with identical

sample sizes but without an item security procedure. Taken together, the

curves in Figure 7 indicate that t'ie item security procedure did not reduce

the power of the LR index. Five of the curves show higher detection rates

than the asymptotic ROC curve for the LR index. The other five curves

closely approximate the asymptotic ROC curve.

Discussion. Item security procedures are a necessary feature for

large-scale adaptive CAT. These procedures minimize the exposure of items

in the item pool, thereby decreasing the likelihood that examinees may

benefit from previous experience with the same test. In addition, new items

will not need to be developed as often when the exposure of current items is

limited by a security procedure.

Results from the present study indicate that the item security

procedure used in selecting CAT-ASVAB Word Knowledge items does not decrease

the power of the LR index when compared to detection rates obtained without

the security procedure. Of course it is possible that other security

procedures may greatly decrease detectability, but in view of the similarity

between various proposed security procedures, this seems unlikely.

Consequently it seems safe to conclude that LR will detect about as well

with a deterministic administration procedure as with a security procedure.
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Figure 7. ROC Curves Generated Using an Item Security Algorithm.
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VII. STUDY 6: STANDARDIZATION OF THE LIKELIHOOD RATIO INDEX

Purpose. Observed differences between distributions of appropriateness

index scores for normal and aberrant patterns may reflect differences in

ability or test score distributions in addition to providing evidence of

index effectiveness. An index value at one ability level or test score may

suggest a high probability of response aberrance w'il.. the same index value

at another test score indicates an adequate fit of the IRT model. In such a

case, the index confounds appropriateness measurement with ability.

The problem identified in the previous paragraph involves the

standardization of an appropriateness index, which has been defined as the

extent to which the conditional distributions of the index differ across the

range of 6 for non-aberrant examinees (Drasgow et al., 1987). Well-

standardized indices display equivalent conditional distributions across

ability levels. These indices allow for a single cutting score and provide

aberrance detection that is largely independent of differences in ability

distributions across normal and aberrant samples. Poorly standardized

indices make it impossible to use a single cutting score to classify

response patterns, since a given index value can have dramatically different

meaning depending on the corresponding test score or ability. Standardized

interpretations of these index scores require evaluations of the conditional

distributions of the index.

The LR index is not well standardized. To date no attention has been

given to standardizing LR because the index has been used as a benchmark

statistic and not as a practical appropriateness index. Since any attempt

to standardize LR will lower detection rates, the LR index has been used in

its unstandardized form in order to provide optimal detection rates. This

study examines detection rates for a standardized version of LR.

Analyses. A standardized version of the LR index was developed by

evaluating cumulative distributions of the logarithm of LR within several

:Tutuallv exclusive ability intervals. Asymptotic distributions of log LR

were obtained by enumerating all possible response patterns, in the same

manner used to construct asymptotic ROC curves in Studies 2 and 3. The

probability of an observed log LR score, conditioning on estimated ability,

served as the standardized index. This procedure will be described in

detail in the following paragraphs.
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There are two approaches to studying the standardization of an

appropriateness index. The scientific question of the relation between the

LR iudex and ability can be addressed by focusing on changes in F(A19)

across 9, whereas a more practical approach focuses on changes in F(A16)

across q. It seems important to investigate the practical approach because

conditioning will take place on estimated ability in practice. Therefore,

cond4 tio--l di-rihurions of LR were defined on intervals of 9.

Asymptotic conditional distributions were created by first enumerating

all possible patterns for a 15-item test, computing LR for each pattern, and

ordering these patterns on 9. An important decision that has to be made at

this point in the analysis is how to divide the complete distribution of

32,768 index scores into conditional distributions. One of the goals in the

present study was to accurately document the changes in the distribution of

LR across 9. Ideally, the number of 9 intervals and span of each interval

should be determined in such a way that the observed changes in the

conditional distributions are gradual. For comparison purposes, these

distributions should contain equivalent numbers of patterns. Conditional

distributions of LR were created in the present study by selecting

successive sets of 1,024 patterns from the ordered list. In this way, 32

distributions of equal size were created, with each distribution containing

approximately 3% of the response patterns.

The logarithm of the LR index (hereafter referred to as LLR) was

computed for each pattern to reduce the variance of index scores across

conditional distributions. Note that this is a monotone transformation; the

rank orderings of LR are preserved in the transformation.

A standardized version of the LLR index was created by transforming

each index score into an approximately uniformly distributed score. This

was accomplished by computing the LLR score and 9 for each response

pattern and then calculating the conditional probability of the observed LLR

score given that the ability estimate falls into O's interval. Thus, the

standardized LLR index is:

LLR = Prob (LLR < LLR'I 9 f I). (12)

where LLR' is the observed index score for a normal response pattern and I

is the interval containing the 9 for the pattern. If for each ability

interval I the conditional distribution FI(t) - Prob(LLR 5 tI9 eI) is well
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approximated by a continuous, strictly increasing distribution function,

then LLR and the random variable giving the 0 interval of the responses

pattern are approximately independent.

The effectiveness of the standardized LLR index in detecting random

responses to the initial five items was evaluated by constructing an

asymptotic ROC curve. A comparison of this ROC curve with the asymptotic

ROC curve for the LR index provides evidence of the impact of

standardization on the power of LR.

Results. Table 6 shows the LLR values at several cumulative

probabilities in each of the 32 conditional distributions used in the study.

Evaluation of these distributions was restricted to the left tail for

practical reasons; large index values will be used as cutting scores. In

several cases, no empirical value for LLR existed at a specific probability

and linear interpolation or extrapolation was required.

LLR (and thus LR) is not well standardized. The left tails of the

conditional distributions of LLR vary considerably across 0 intervals. At

the same time. the 32 distributions do a reasonable job of documenting the

changes in LLR as a function of 6.

From Table 6 it is apparent that a large percentage of the response

patterns do not yield LR scores greater than 1.00. The response patterns

with the highest 3% of ability estimates, for example, will produce LR

values greater than 1.00 fewer than 5 times in 1,000. Response patterns

giving Os in the range [0.95, 1.26] will never produce LR indices greater

than 1.00. In general, Os greater than 0.57 are extremely unlikely when the

initial five responses to the test are random. This result indicates that

patterns yielding these Os can be excluded from appropriateness analyses

without significantly reducing power.

Response patterns giving Os in the range [-0.81, -0.64] and

[-1.21, -1.14] are much more likely to produce large index scores. Patterns

within these ranges of 6 are more likely to be classified as aberrant than

are patterns giving other Os. Consequently, the detection rates at these 6

levels will be accompanied by higher false alarm rates. Table 7 gives the

hit rates and false alarm rates for the unstandardized LR index and the

standardized LLR index. At low false alarm rates, the power of the LR index

is greatly reduced by standardization. The standardized index classifies
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Table 6. LLR Index Scores at Various Cumulative Proportions.

Alpha Level

0 Interval .001 .005 .01 .05 .10

1.26, + x] 1.05 -1.85 -2.56 -4.17 -4.52

0.95, 1.26] -0.28 -0.49 -1.03 -1.95 -3.23

0.80, 0.951 2.25 1.05 -1.70 -1.98 -2.11

0.68, 0.80] 4.94* 0.66 0.48 -1.94 -2.06

0.57, 0.681 0.77* -0.21 -0.27 -1.28 -1.96

0.42, 0.57] 3.16 1.09 -0.49 -1.01 -1.31

0.18, 0.42] 3.60* 0.76 -0.24 -1.15 -1.28

[-0.02, 0.18] 4.46 2.08 1.32 -0.67 -1.10

[-0.15, -0.02] 4.61* 2.58 1.77 0.18 -C.81

1-0.24, -0.15] 6.51 4.01 2.27 0.36 -0.31

[-0.32, -0.24] 4.61 2.36 2.13 0.88 0.43

[-0.40, -0.32] 5.38* 4.01 2.03 0.51 0.20

[-0.47, -0.40] 3.39 2.95 1.36 0.42 0.01

[-0.56, -0.471 6.71* 5.95 2.60 0.26 -0.06

[-0.64, -0.56] 2.10* 2.02 1.98 1.17 -0.30

[-0.72, -0.64] 7.40* 3.75 3.29 1.30 0.01

Note: * - extrapolated value (no empirical value with conditional

probability < alpha).
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Table 6 (Continued)

Alpha Level

0 Interval .001 .005 .01 .05 .10

r-0.81, -0.721 7.20* 5.23 2.91 2.12 1.05

[-0.90, -0.811 4.48 3.93 2.35 1.58 0.96

L-0.98, -0.90 i  4.30* 3.96 3.53 1.27 1.10

[-1.06, -0.98] 2.91* 2.88* 2.84 1.77 0.88

-1.14, -1.061 2.17* 2.17" 2.15 1.49 0.63
>1.21, -1.14] 11.97* 6.00 1.88 1.43 1.13

>-1.29, -1.21, 1.98 1.39 1.25 0.89 0.56

[-1.38, -1.291 5.37* 5.28 5.10 0.67 0.49

[-1.48, -1.38] 5.02* 4.52 3.61 0.46 0.29

-1.59, -1.48) 334* 3.21 3.20 2.40 0.43

[-1.71, -1.59] 2.56* 2.54 2.52 2.28 1.94

[-1.83, -1.711 1.76* 1.75 1.72 1.62 1.49

'-192, -1.83] 1.99 1.14 1.12 1.05 0.97

[-2.05, -1.92] 1.09 1.06 0.83 0.69 0.62

[-2.22, -2.05] 1.08 0.88 0.84 0.40 0.38

- , -2.22] 1.12 0.90 0.51 0.38 0.26

Note: * - extrapolated value (no empirical value with conditional

probability < alpha).
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Tale 7. Proportion of Aberrant Response Patterns Detected by

Stirdardized and Unstandardized Indices at Selected ROC Curve Points

Standardized Unstandardized

LLR Index LR Index

.001 .00 .49

.005 .16 .62

.01 .52 .66

.02 .60 .71

03 .68 .75

04 72 .77

.05 .75 .78

.07 .80 .81

10 .85 .85

Note: Q - Proportion of Normal Patterns Misclassified as Aberrant.
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less than 1% of the aberrant patterns correctly at a false alarm rate of

.001, whereas the unstandardized index has a 50% detection rate at the same

error level. At a false alarm rate of .005, the standardized index has only

25% of the power of the unstandardized index. The detection rates for both

indices are roughly equivalent at false alarm rates of .05 and beyond.

Discussion. The analyses presented in this study represent only one of

several approaches to standardizing appropriateness indices. The intent

here was not to develop the best standardization of the LR index but rather,

to evaluate the effect of one type of empirical standardization on the power

of LR. Molenaar and Hoijtink (1987) and Kogut (1988) provide examples of

alternative procedures for obtaining the conditional distributions of an

appropriateness index.

The need for standardization results from a confounding of test scores

or 9 and appropriateness measurement. Several forms of response aberrance

will produce a strong relation between estimated ability and measured

appropriateness. For example, we would expect that when cheating takes

place over a significant portion of a test, the resulting test scores or

ability estimates will most often be above average. Consequently, when

attempting to identify cases of cheating, non-aberrant response patterns

that yield above-average scores are more likely to be misclassified as

aberrant than are non-aberrant patterns yielding below-average scores.

Because labeling an examinee as a possible cheater carries potentially

serious consequences for that examinee, detection procedures that are more

likely to misclassify one group of examinees than other groups will not be

considered fair. Use of a well-standardized appropriateness index, however,

will create a situation where no single group of examinees--classified by

ability--is "singled out" when testing for cheating. Although the

standardized index may provide less power than its unstandardized

counterpart, the decrease in detection rates may be a necessary cost for

ensuring that measured appropriateness and test scores are independent.

In other circumstances, the unstandardized index may be preferred over

the standardized version. This might be the case when detection rates

decrease significantly after standardizing and the consequences of using the

unstandardized index--in which higher false alarm rates will occur for

certain ability groups--are not considered to be particularly negative for
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examinees or test users. In general, procedures that identify some

examinees as possibly having test scores that are spuriously low, with the

concomitant opportunity to obtain a higher test score, should be well

received by most of these examinees.

The negative consequences of random responses to initial items on an

adaptive test result from the test's inability to recover from this

situation. In these cases, the examinee has given a pattern of responses

from which the adaptive test cannot adequately estimate ability. It may be

somewhat of a misnomer to label these response patterns as aberrant; what is

certain is that these patterns will often produce spuriously low test

scores. Identifying examinees who give these patterns focuses attention on

the test itself rather than on the examinees. The social stigma that

results from being suspected of other forms of response aberrance, notably

cheating, should not result in this case. Thus, the cost of higher false

alarm rates for some ability groups that will result when using the

unstandardized LR index may be an acceptable price to pay in order to obtain

optimal detection rates.
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VIII. STUDY 7: CENERALIZABILITY OF DETECTION USING

THE LIKELIHOOD RATIO INDEX

Purpose. Likelihood ratio tests achieve their power through

specificiv. An optimal test for detecting four initial random responses is

not an optimal test for detecting five initial random responses. The

purpose of this study is to determine how sensitive LR is to misspeci-

fication of the number of initial random responses. In the unlikely event

that a likelihood ratio test for four initial random responses turns out to

be nearly optimal for detecting any number of initial random responses, then

a very simple, nearly optimal appropriateness measurement procedure can be

formulated.

On the other hand, if it turns out that the optimal test for k initial

responses is not close to being optimal in detecting k'ok initial random

responses, then the situation is somewhat mo)re complicated. Nonetheless an

optimal test can still be obtained by first determining the proportion of

people who respond randomly to the first item only, to the first two items,

to the first three items, etc. The point is discussed after some results

are presented.

Study 7 attempts to determine the ability of an LR index designed to

detect random responding on the first k items to detect random respondii. on

a shorter or longer initial string of items.

Data Generation. Four conditions of actual aberrance were simulated by

creating samples of 2,000 response patterns where the initial two, three,

four, or five responses were random. These aberrant samples were each

combined with 4,000 normal patterns and LR indices for detecting random

responses to the initial two, three, four, or five items were computed for

each pattern. ROC curves were then constructed for each of the 16

conditions defined by the combinations of actual and hypothesized aberrance.

Results, Figure 8 shows three graphs containing the ROC curves for the

LR index computed to detect random responses to the initial two items.

Actual aberrance consisted of random responses to the initial three, four,

and five items. The darker curve in each graph is the ROC curve for the

trul; optimal index. Optimal ROC curves represent the detection rates that

would be a-hieved if the actual form of aberrance were c rrectly specified

, the LR index. Figure 9 compares the ROC curves for the LR index for
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Figure S. ROC Curves for Likelihood Ratio Index where Hypothesized

Aberrance - Random Responses to the Initial Two Items and Actual Aberrance

Random Responses to the Initial k Items.
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Figure 9. ROC Curves for Likelihood Ratio Index where Hypothesized

Aberrance - Random Responses to the Initial Three Items and Actual Aberrance

-Random Responses to the Initial k Items.
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detecting three random responses with optimal detection rates, where ac['al

aberrance was two, four, and five random responses. Figure 10 shows the RZ

curves for the LR index for detecting four random responses, where actual

iberrance was two, three, and five random responses, versus optimal

detection rates. Figure Ii shows the ROC curves using the LR index for five

random responses, where aberrance was actually random responses to the

initial two, three, and four items, compared to optimal ROC curves.

The LR index computed for two random responses (Figure 8) is reasonab1y

effective at detecting three random responses, but is Luch less effective

detecting initial sequences of four and five random responses. The LR index.

computed for three random responses (Figure 9) performs well when actual

aberrance is either two or four random responses. The LR index for four

random responses (Figure 10) is effective in detecting either three or five

random responses. The LR index for five random responses (Figure 11) does a

good job at detecting random responses to the initial four items.

Discussion. The high detection rates displayed by the LR indices

appear to generalize to adjacent forms of aberrance. Together the LR

indices for three or four items give moderately high detection rates for

initial random responses on two through five items. That is, the LR index

computed for three random responses (Figure 9) does a good job of

identifying patterns containing random responses to the initial two or four

items and provides optimal detection for the case of three random responses,

while TR computed for four responses (Figure i]) detects an initial sequence

of three, four, or five random responses well.

The likelihood ratio indices show sufficient sensitivity to length of

the initial segment of random responses to be useful for estimating the

proportion of people fumbling on one item, on two items, on three items,

etc. 'hen these proportions are known, a single optimal test can be

formulated as follows. Let LRk denote the likelihood ratio statistic for
random responding on exactly k items Let pk denote the proportion of

people randomly responding on exactly k items. Thus p is the proportion of

normal examinees, p, the proportion of examinees randomly responding on the

first item only, etc. Then it can be shown that the index

15
LR = Pk k 1

P k k45
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Figur. 10. ROC Curves for Likelihood Ratio Index where Hypothesized

Aberrance - Random Responses to the Initial Four Items and Actual Aberrance

- Random Responses to the Initial k Items.
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Figure 11. ROC Curves for Likelihood Ratio Index where Hypochesized

Aberrance - Random Responses to the Initial Five Items and Actual Aberrance

- Random Responses co the Initial k Items.
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is optimal for testing the hypothesis that the examinee responded randomly

on at least one item against a hypothesis of no Fuibling. This index is

optimal in the sense that it produces the highest ROC curve, or

equivalently, has highest power among all tests for fumbling with any

specified false positive rate.
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IX. CONCLUSIONS

CAT has the potential for providing accurate ability estimation with

significantly fewer items than standardized tests, provided the IRT model

used in estimating ability and selecting items is appropriate. The

responses used to compute initial estimates of ability are particularly

important. When these responses fail to conform to the IRT model, final

ability estimates are found to be highly inaccurate, even when subsequent

items are answered in accordance with the IRT model. The results presented

in Study 1 indicate that random responses to as few as the initial two items

establish an ability estimate that anchors the final 0 well below 9. For

examinees of above-average ability, the amount of underestimation can be

severe

The LR index, which provides the theoretically highest possible

detection rates for a specified degree of aberrance, was shown in Study 2 to

have significant power for detecting an initial sequence of random

responses. High hit rates, relative to low false alarm rates, were observed

for even the least severe case where only the initial response was random.

These results indicate that a sequence of random responses to initial items

on an adaptive test can be detected with the degree of accuracy required by

test practitioners.

Four nonoptimal appropriateness indices were examined in Study 3.

Unlike the LR index, these indices do not provide a specific test of an

alternative hypothesis, but several have demonstrated near optimal detection

rates for some forms of aberrance on conventional tests. These nonoptimal

indices were not effective, however, in detecting random responses to the

initial five items on a 15-item adaptive test.

In Study 4, sample-based ROC curves were constructed varying Ns for

normal and aberrant patterns. These analyses were needed to interpret the

accuracy of previous studies using sample-based ROC curves and to establish

the sample sizes needed for Study 5 and Study 7. The results from Study 4

indicated that samples of 4,000 normal patterns and 2,000 aberrant patterns

provided for near-asymptotic ROC curves.

Study 5 examined the power of the LR index when an item security

procedure was used during item selection. The item security procedure used

in Study 5 did not reduce the effectiveness of the LR index. Consequently,
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the security procedure was not used in subsequent studies. Note that the

computation of LR is not complicated by the introduction of a security

procedure. The analytic procedure for estimating ROC curves is not used

with a nondeterministic item selection algorithm because there are too many

possible test outcomes.

The LR index was shown to be poorly standardized in Study 6. A

standardized version of LR was developed, with the standardized index

providing significantly less power than the unstandardized index at low

false alarm rates. Fortunately, standardization is not nearly so important

in the detection of fumbling as it is with socially undesirable behavior,

such as cheating.

Finally, the resulLS in Study 7 indicate that the LR index is capable

of detecting sequences of random responses adjacent to the sequence

specified when computing the index. In particular, the LR index computed

for random responses to the initial three items was able to identify a

sequence of two or four random responses adequately, the index computed for

four items was able to detect either three or five reasonably well, and LR

computed for five items displayed high levels of power for detecting a

sequence of four random responses. The sensitivity of LR to the length of

the initial segment of random responses suggested LR may be useful in

determining the distribution of aberrance.

Recommendations for Further Research

1. Obtaininz Base Rates for Aberrance. The LR indices possess remarkable

power for identifying patterns containing sequences of random responses of

specified length. Thus, the indices may be useful in estimating the base

rate or distribution of fumbling in the general population and in various

groups. With such estimates the effectiveness of procedures designed to

reduce fumbling could be evaluated. Estimates could also be used to

determine whether fumbling is more common in minority or other

demographically defined groups. Finally, as noted in Study 7, the relative

frequency of different degrees of fumbling can be incorporated in a single

optimal test for any degree of fumbling.

2. Decision-Theoretic Approoriateness Measurement. Drasgow and Guertler

(1987) have argued that the detection rates for an appropriateness index in

-50-



simulation studies provide only a portion of the information needed to

determine a cut score for the index. The selection of a cut score should

also incorporate the base rate of aberrance in the population of interest as

well as the relative importance of the possible classification outcomes.

For example, which outcome has greater disutility--classifying a normal

pattern as aberrant (false positive) or classifying an aberrant pattern as

normal (false negative)? The values assigned to these potential outcomes

will likely have a significant effect on how the appropriateness index is

evaluated and used.

Drasgow and Guertler (1987) suggest a Bayesian scheme for handling the

problem of selecting a cut score, where an index score t is claczified as

aberrant when

(Prob(cIAb) I - Prob(Ab) U4 U2
____ __ ___ ___ ____ __ ___ ___(14)

Prob(t N) > Prob(Ab) X U1 - U3

where Prob(tlAb) / Prob(tcN) is the likelihood ratio (equation 1), Prob(Ab)

is the base rate of aberrance, and UI,U2,U3, and U4 are the (dis)utilities

d-sociated with the possible classification outcomes:

Ul classifying an aberrant pattern as aberrant ("correct positive");

U2 classifying a normal pattern as aberrant ("false positive");

U3 classifying an aberrant pattern as normal ("false negative");

U4 classifying a normal pattern as normal ("correct negative").

Comparisons of index scores developed using equation 14 in different

testing situations may highlig'.t interesting and important distinctions in

how appropriateness measurement might be implemented.

3. Evaluating Change Scores. An initial sequence of random responses to an

adaptive test using Bayesian estimation produces a ; that typically

underestimates 9 for examinees of average to above-average ability. For

high-ability examinees, the underestimation will be severe. For less able

examinees, the negative bias in the ability estimate will be less severe.

In practice, we would like to identify those examinees whose Os suffer the

most from random responses to initial items.

In simulation research we can determine the change score for an

examinee by computing
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C N 6 A' ( )
where N is the ability estimate obtained when each item in the adaptive

N*
test is answered in accordance with the IRT model and 0A is the ability

estimate obtained after the examinee gives random responses to initial

items. With this additio&nal information, the distribution of 6C among the

aberrant patterns not identified by LR can be observed. It is expected that

9C will generally be small among aberrant examinees not identified by LR.

We have observed that response patterns that are hard to detect typically

have small change scores.
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